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Abstract 

Computational tools have been crucial in the advance of architectural design and production. Since the 

early 1960s, developments in Computer-Aided Design, Manufacturing (CAD/CAM) and Building 

Information Modeling (BIM) have had a fundamental impact in how the profession evolved. 

Computation helped improve fluency in the creative stages of architectural conceptualization, increase 

productivity and reliability in design and construction, democratize access to architectural production, 

and foster a wealth of formal and technical innovation in architecture. Recent groundbreaking 

developments in the field of Artificial Intelligence (AI) and Machine Learning (ML) are bearing the 

promise of a new revolution in computing, led by novel algorithms capable of learning from experience, 

rather than rules. Neural networks are now capable of predicting shopping preferences, musical 

recommendations, and health diagnostics at a speed and success rate that has greatly surpassed that of 

any specialized human. Just like every other industry has been fundamentally transformed by the power 

of computation, the field of architectural design and production is experiencing disruptive changes 

through the power of data. 

It is naïve to believe that the field of architecture will not be affected by these developments; 

the question is rather in which ways they will reshape the profession and its outcomes. How can data be 

exploited in design processes? What will the role of the architect be within highly automated design 

environments? Can AI make architectural design more accessible to the end user? In this essay, an 

overview on the current role of AI and ML in architectural design is presented. The conversation is 

situated through a historical overview of the role of computation in architecture, followed by a mapping 

of the current state of the art in machine learning applications in architectural design. Informed by 

previous and current trends, an outlook is postulated about what changes to expect in the design 

discipline and how to adapt to them. 
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Introduction 

The development in the Renaissance of notational systems for the representation of architecture—the 

lineamenta—constituted a major shift from the traditional, ad hoc means that master masons employed 

for building construction, and is regarded as the origin of the modern split between designing 

architecture and building it (Carpo 2011). Plans, elevations, sections, and perspectives became the new 

language of architecture, the vehicle for its allographic materialization and, most importantly, the main 

substrate for its conceptualization. Drawing two-dimensional sketches and blueprints is, still today, the 

most common thinking aid in the early stages of the architectural design process; they constitute an 

abstract mental model suitable for spatial conceptualization, and have a direct correlation with the 

documentation needed to produce a building. Architectural drawings are the instrument to both think 

and make architecture. 

The advent of computers had a profound and everlasting impact on all aspects of human 

endeavors. The unleashing of the power of computation offered obvious advantages in all fields that 

required intense number processing, such as census, statistics, and military applications. Consequently, 

it also marked the beginning of deeper interrogations on the benefits that access to—potentially 

infinite—computing power could bring to our very own mental processes. Early pioneers in human-

machine interaction speculated on the capacity of computers to aid scientists in storing and indexing the 

knowledge of a world of exponentially growing complexity, allowing them to reach farther and deeper 

into this web of interconnected intelligence (Bush 1945). This notion became the foundation for visions 

of a future with true human-computer symbiosis, where humans could outsource menial tasks to 

computer companions, and focus on creativity and decision-making, a task humans are arguably better 

suited for (Licklider 1960). There was a general consensus that creative thinking would never be 

replaced by computers but, instead, the use of computers as "clerks" would result in a global human 

augmentation in intellectual capabilities without precedents in history (Engelbart 1962). 

Unsurprisingly, the field of architecture promptly joined this emerging conversation, and turned 

to inquiry about the potential role of computation in assisting design and production processes. The 

automotive and aerospace industries pioneered this journey, with an initial emphasis on the 

development of computer graphic frameworks and computational models for the accurate 

representation of the complex surfaces typically manufactured for their products (Cardoso 2015). In a 

research partnership between International Business Machines (IBM) and General Motors (GM) in the 

early 1960s, researchers soon identified that "drawings, pictures, and models were the principal media 

for communication and documentation of design ideas," and asked themselves "how could 
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computational techniques significantly impact the design process?" (Krull 1994). The outcome of this 

venture was the DAC-1, possibly the earliest example of an integrated computational environment for 

design. The system was able to scan physical drawings, approximate their form using polynomial 

models, represent them in three dimensions on a display screen, and allow a certain degree of 

interaction with them, a huge feat at the time. Interestingly, the acronym stood for Design Augmented 

by Computer, in clear reflection of the new human-machine zeitgeist. 

Parallel explorations of machine-aided design processes were also being conducted in academia, 

characterized by perhaps more experimental and speculative propositions. The most notorious example 

was the development of Sketchpad in 1963, a computational system for vector drawing on a stylus-

enabled display (Sutherland 1963). Sketchpad offered a revolutionary touch-and-draw interaction 

model, a paradigm that would itself need more than 20 years to become a standard through the vehicle 

of computer mice—also an invention of the epoch (Engelbart 1968). However, Sketchpad's most 

groundbreaking feature was the capacity of the user to select elements of the drawing, and request the 

system to adjust them based on custom geometrical constraints: horizontality, orthogonality, 

parallelism, etc. Such a contribution was remarkable not just in computer-assisted drawing, but for 

computation in general, as it fundamentally allowed users to define not just the data itself—the 

drawing—but relational properties defining a sense of structure and dependency between them (Davis 

2013). Moreover, these constraints were amongst the earliest form of computer programming that was 

based on the user defining what they wanted, rather than how to achieve such result (Victor 2013). 

Unfortunately, Sketchpad's vision of "a man-machine graphical communication system" 

remained fairly symbolic. Computation became smaller, faster, and cheaper, leading to the commercial 

availability of personal computers, and the development of multiple examples of Computer-Aided 

Design (CAD) software (Weisberg 2008). Nevertheless, none of the packages that became commercially 

successful featured the novel models that Sketchpad spearheaded for design thinking augmentation. 

Instead, "the CAD software industry was dominated by systems seeking to 'simply' automate traditional 

drafting procedures" (Cardoso 2013), losing a valuable opportunity to take advantage of the computer's 

special capabilities (Nelson 1990). 

 

History of AI 

Such explorations of the role of computers as creative partners were representative of a larger 

revolution in computer science, one which focused on interrogating the very nature of intelligence itself. 

The development of automated computing machinery meant an increase in the computation power of 
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simple calculations several orders of magnitude bigger than ever possible before. A more fundamental 

question immediately arose: at which point does the aggregation of increasingly larger amounts of these 

basic operations start resembling the complexity of human thought? Or perhaps, inversely, how should 

these calculations be structured to achieve such a goal? And ultimately, if successful, how would we 

know? 

Some of the first attempts to answer these questions came in the form of mathematical models 

to describe the human brain. These proposals involved formal logic theories to model nervous activity 

(McCulloch and Pitts 1943) and the perception of audiovisual signals (Pitts and McCulloch 1947). The 

premise was fairly simple: if the behavior of the nervous system could be described as a set of logical 

operations, then replicating these operations with the new computing machines might lead to machines 

that could learn and think. However, such intuitive human concepts had not yet found a formal 

definition in computer science terms, as the difference between a simple memory register and the 

capacity to make predictions based on data never seen before did not seem to be a binary one. At which 

point does memory become experience that can be enacted into creative thinking? This question 

became the core of higher-level inquiries on the nature of machine thought, and for which the 

pioneering proposition—and the one that is still today the gold standard of Artificial Intelligence (AI) 

tests—was to abandon possible quantitative methods, and shift validation assessments back to 

qualitative perception. Put simply, if a human is unable to discriminate between a human and a machine 

interlocutor, the machine shall be regarded as capable of thinking akin to a human being (Turing 1950). 

Developing machine thought by mimicry of the human brain inspired yet another powerful 

novel intuition: that the processes that led to machine thinking may not be programmed, but should 

instead be learned. This idea conformed the basis for the earliest forms of Machine Learning (ML), such 

as reinforcement learning systems based on success-based rewards (Samuel 1959), or the formulation of 

the perceptron, a machine theoretically capable of learning anything that it could be programmed to do 

(Rosenblatt 1961). Such an idea was also the seed of the more modern dialectic between traditional 

programming—developing algorithms by encoding rules—and programming by example—creating 

algorithms that can learn from data. Interestingly, the visionary notion from the 1950s that computers 

might be capable of learning might have arisen because computer programming at that time was still 

not fully developed as a field of study (Minsky and Papert 1988). 

Research in AI and ML stalled after the 1970s. The reasons were varied: demonstrated 

limitations of early ML models such as the perceptron (Minsky and Papert 1969), reduced computing 

capacity, overhype, and other socio-political factors. Interest and funding declined into the first so-called 
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"AI winter," followed by a brief period of renewed enthusiasm in the 1980s, and a second stretch of 

pessimism and cutbacks in the field (Hendler 2008). It wasn't until the late 1990s and the 2000s that 

interest in AI started to bloom again. Advances in parallel computing, and widespread availability of 

massive amounts of data, bore the promise of democratizing theoretical innovations that had been 

quietly developed during the cold nights of multiple AI winters. The most notable progress occurred in 

the field of deep learning, including the popularization of neural network architectures and techniques 

for unsupervised learning (LeCunn et al. 2015), resulting in the modern boom in AI. 

Presently, the field has become fairly accomplished at using examples to train algorithms in 

detecting patterns in datasets, a notion we denote as making machines learn. However, for the most 

part, the main applications of these techniques are typically reduced to predictive functions such as 

object recognition, information pre-screening, product suggestion and other similar prosaic automation 

tasks. While not lacking merit, these models still do not fully satisfy the spirit of the original quest for 

machine intelligence. Producing new data from previous data is a good starting point, albeit one that 

does not yet fully represent one of the most characteristic traits of human intelligence: generating 

something out of nothing or, in other words, creative thought. In ML terms, a neural network could be 

trained to replicate learned patterns on previously unseen data, a notion typically referred to as 

inference. However, could this learning be used to generate brand new information—from no input 

data—exhibiting those same patterns? 

The search for an answer led to the most recent revolution in the field of AI: the development of 

generative models. The cornerstone of this new movement was the invention of Generative Adversarial 

Networks (GANs), a ML architecture that is composed of two neural networks: a first one to randomly 

generate samples of real vs. made-up information, and a second one to discriminate between authentic 

and fake results (Goodfellow et al. 2014). The genius in this proposition is that, by opposing them 

against each other using a reward system, the neural networks can train each other autonomously to 

become better at, for instance, identifying fake images of cats and generating realistic-looking ones 

respectively. In this scenario, the generator is considered trained once it surpasses the capacity of the 

discriminator to discern what is real and what is not, and can subsequently be used as an endless source 

of artificial, synthetic data without the need of any further inputs as a source. The concept proved 

groundbreaking, sparking an explosion of GAN-inspired generative neural network architectures to 

generate, for example, photo-realistic images of human faces (Karras et al. 2019), celebrities (Karras et 

al. 2018), modern art paintings (Elgammal et al. 2017), bedrooms (Radford et al. 2016) or three-

dimensional chairs (Kleineberg et al. 2020), or the extension of this architecture to work with inputs, 
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such as image to image translations (Isola et al. 2017) or style transfers (Zhu et al. 2017). Additionally, 

the generative capacity of GANs would in turn become the perfect affordance to reexamine the 

potential role of computers as creative partners. 

 

AI Research in Architecture 

As earlier discussed, modern CAD systems carry the legacy of a modeling paradigm that evolved during 

the 1980s, with the advent of personal computers and the development of commercial software 

packages, and that remains today: the digital replication of the analog patterns found in traditional 

drafting tables, without harnessing the enhanced features that a computational environment could 

afford. The reasons for this literal translation might be multiple: the lack of computer literacy amongst 

early computer adopters, the commercial pressure to make a product successful for the general user, 

the need to cater to a labor force trained in analog methods, etc. Nonetheless, the many advantages 

brought by the digitization of drafting made CAD systems extremely successful, swiftly replacing analog 

drawing to the extent that virtually every modern architectural project is developed using digital means. 

The digitization of drafting had an indisputable impact in accelerating and optimizing the 

production of architectural projects. Yet, a sort of divide remains between making architecture and 

designing it. Generations of designers still use analog methods, such as drawing with pencil and paper, 

as a means to think through a design; the immediacy, fluidity, flexibility and freedom afforded by the 

medium is thus far challenging to mimic with CAD systems (McCullough 1996). Such duality has led to 

the perception that there is still a strong divide between the processes typically involved in the early 

stages of architectural design, a moment where ideas are flowing, changes are rapid and iteration is 

key—the creative stage—and the requirements for the later stages of the development of such 

concepts, where ideas and visions are fixed into a detailed set of construction documents and building 

specifications suitable to be enacted into a building by a third party—the production phase. The 

comprehensiveness required at this latter stage results in an elevated degree of friction to changes, 

making it challenging to work at these two levels simultaneously. However, the production phase is also 

arguably the one requiring the least creative effort and, hence, the part of the architectural process that 

might be more susceptible to automation. These boundaries might be blurring though, as younger 

generations of digital-native architects are increasingly fluent in using computational tools at every stage 

of the design process, and CAD platforms are improving their capacity to seamlessly integrate early 

conceptual drawings with advanced modeling and informational tools. CAD is progressively becoming 

the de facto, integral tool to think and design architecture with. 
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The main historical substrate at the core of these design and production processes has been the 

architectural floorplan. Drawings are the main means to represent and build architecture and, arguably, 

the floorplan is the most relevant, as it encapsulates the essential features of the spatial and 

experiential character of a building. Unsurprisingly, floorplans as a medium were also the first entry 

point to AI/ML-assisted architectural design. Some of the earliest attempts at automated generation of 

floorplans relied on relational representations of the functional units of a program, and used random 

heuristics to find solutions within the constraint space (Negroponte 1970). However, modern ML 

floorplan generation typically generates semantic partitioning, a form of estimation of which areas of a 

floorplan would be destined to particular uses, and then applies it to the basic layout of a floorplan from 

an input building footprint (Peters 2016). This idea has been extended to train neural networks to learn 

translations between the different levels of detail in the stages of the design of a particular building: 

from land plot boundary to building footprint, from footprint to room partitions with semantics, and 

from partitions to fully furnished layout (Chaillou 2019). The fundamental contribution of this model is 

the conceptual discretization of the architectural design process into atomic operations, narrow and 

focused enough to be undertaken by current neural networks. Subsequently, these individual parts can 

be sequenced into an aggregate workflow encompassing the complexity of generating a full-fledged 

building plan from an empty plot of land. 

Floorplan generation seems to be a growing area of interest in the research of AI applications in 

architecture, from a multitude of different perspectives. The generation of detailed building plans from 

graphical information continues to be under deep scrutiny, complemented by ongoing research 

questioning how this can be achieved in more direct connection to the mental processes that we use to 

conceptualize such designs. While work has been done in the generation of textual representations from 

images of floorplans (Goyal et al. 2021), the inverse operation, neural networks that generate building 

layouts from literal descriptions, may arguably have the greatest potential impact in architectural 

design. Progress has been done in the development of neural networks that generate simple images 

from text (Xu et al. 2018) yet, due to the inherently creative nature of this process, a significant amount 

of human interpretation still needs to be contributed to elevate the outcomes to the category of 

buildable object (Del Campo 2021). Interestingly, a form of representation that is proving quite 

successful in encoding the underlying logics of a floorplan is graphs. Graphs represent interconnected 

nodes with embedded properties, a data structure that fits particularly well the diagrammatic sets of 

relations between architectural spaces conceptualized during the design stages. Additionally, graphs 

provide a fairly direct translation into the adjacencies of the different rooms in a building plan, including 
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the quality of their connections. Promising research has been conducted in the creation of algorithms 

that extract graph representations from architectural floorplans (Lu et al. 2021), the necessary step for 

the creation of datasets to train neural networks that can learn to generate estimations of floorplan 

distributions from these schematic descriptions (Nauata et al. 2020). 

Diagrammatic floorplans are the most fundamental form of architectural representation, and 

they often serve as the baseline for the development of more comprehensive informational 

representations of buildings, such as Building Information Models (Deamer and Bernstein 2010). 

However, a challenge that AI-based design workflows currently face is that most modern neural 

networks are developed to work with raster images as inputs and outputs, as opposed to the vector 

drawings typically used in CAD modeling. The reason might be quite simple: bitmaps are a far more 

common medium, in comparison to the relatively niche use of vector information worldwide. Rasterizing 

vector drawings is a fairly straightforward operation, as it simply requires discretizing structured 

geometrical data into a grid of colored pixels. Unfortunately, the inverse operation is actually rather 

complex to perform, as it requires the reconstruction of structure based on perceived patterns, a 

process intrinsically creative that is difficult to achieve with rule-based algorithms, but for which ML is 

proving successful (Zeng et al. 2019). Moreover, the geometrical features found in common floorplans—

linearity, continuity, perpendicularity, doors and windows—constitute a significant aid to the learning 

processes in ML algorithms. 

The topic of modes of formal representation in 2D for ML models is one that is not trivial; using 

ML to represent 2D models constitutes an exponential jump in complexity when addressed for 3D 

geometry. Like vector drawings, this application remains too niche of a use case for mainstream 

research. The problem becomes more complicated when considering the wide variety of available 

formats for representing three-dimensional form: NURBS geometry, triangulated meshes, point clouds, 

and voxel fields are all common standards in industry, with translations between them often not being 

straightforward. Current research in 3D object classification tends to use voxel representations of 

geometry (Wu et al. 2015), partially because the architecture of these neural networks inherits heavily 

from the convolutional logics commonly used in 2D image recognition. Sadly, voxel models are probably 

the least popular form of representation in architecture, although promising research is being 

developed that extends voxel logics to approximations of signed distance functions (Kleineberg et al. 

2020), or that work directly with mesh representations at its core (Hanocka et al. 2019); the field is 

evolving very rapidly on this front. 
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Perhaps one of the most interesting aspects of 3D-oriented research in AI has not been on the 

actual 3D models, but the very act of modeling itself. Previous research in the 2D space has 

demonstrated that many of the patterns that are present in the way we draw, can actively be learnt and 

replicated by neural networks based on a sequential approach to their creation (Ha and Eck 2018). For 

instance, if we are asked to draw a cat's face, most humans tend to follow a similar pattern: a circle 

representing the head, two ovals for the eyes, two triangles as ears and a few arcs for the whiskers. 

Surprisingly, it has been demonstrated that there is a strong likelihood that the strokes we create will be 

drawn in that particular order, and following a similar structure. The overall consistency of the human 

brain abstracting reality into 2D drawings has been subject to inquiry using ML, with revealing results 

when ML is applied to the creation of sketches from common objects (Ha and Eck 2018) or in 

engineering drawings for mechanical parts (Willis et al. 2021a). Furthermore, the majority of commercial 

CAD packages offer a similar step-wise paradigm for 3D creation: models start from primitives which are 

increased in detail through procedural operations such as constructive solid geometry. The sequential 

nature of this process is a particularly good fit for recurrent architectures in neural networks, with 

successful results for example in ML-generated mechanical parts (Willis et al. 2021b). Additionally, some 

modern CAD environments feature frameworks to express these operations explicitly, allowing the user 

to develop parametric models using graph-like representations. Such models have also been explored as 

the basis for neural networks which can learn patterns in sequences within the graph, are able to 

suggest probable next operations and, therefore, could constitute a real-time aid in modeling processes, 

augmenting human creative capacities and supporting design exploration (Toulkeridou 2019). 

The notion of style in AI is an affordance that seems particularly compelling for architectural 

design. One of the most fundamental concepts to address when working with ML is bias, typically 

defined as the tendency of a neural network to replicate the patterns that it finds on the dataset it was 

trained on. The core idea is that, if a dataset is not properly balanced, the network may tend to favor—

or disfavor—certain results over others. This scenario is significantly worrisome if the AI's decisions will 

have a negative impact on the future of human beings, and it is central to any modern ethical 

considerations on the use of AI. However, it can be argued that from a design perspective, a bias 

towards replicating patterns might indeed be a valuable asset, as it could be explored to surface the 

commonalities between data points coming from the same origin, hence revealing an implicit sense of 

style. Some of the earliest image-to-image GANs have featured images of central-European building 

façades in their training datasets, successfully using them to replicate their architectural style (Isola et al. 

2017), whereas contemporary artists have taken advantage of this characteristic to train neural 
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networks to learn the style of iconic architects, and generate dream-like animations navigating through 

their imaginary creations (Anadol 2019). Similarly, style is also a concept that has relevance in the 

perception of urban environments, as cities have traditionally been characterized by their distinctive 

image and atmosphere. ML can be used to capture this genius loci, superimpose it in digital immersive 

3D environments and use it as a design tool to replicate the spirit of characteristic locations (Steinfeld 

2019), as well as use city style translation to replicate the livability of pedestrian downtowns and use 

this as a tool for policy making in urban design (Kim et al. 2022). 

The multiplicity of ways AI is being harnessed to approach different aspects of the architectural 

process is a testimony to its versatility and adaptability. But perhaps, most importantly, it epitomizes 

what could be its most important affordance in design: its suggestive capacity. Even if ML can be used to 

aid in small parts of the puzzle, architectural design remains a challenge too broad, multi-faceted and 

complex for a technology that, at this time, can only tackle much narrower problems. Currently, the 

holistic generation of architectural designs by AI agents seems relatively distant. However, the 

generative capacity of neural networks is proving a tremendous asset as an aid in design processes, in its 

capacity to assist humans with recommendations, ideas, alternatives and options. In turn, these 

suggestions expose designers to new, and often surprising ideas, provide inspiration, foster discovery 

and help make thinking processes more broad, iterative, and fluid. The suggestive power of neural 

networks as concurrent creative companions may have the potential to fulfill the original quest for true 

human-computer symbiosis (Martínez Alonso 2017). 

One last aspect in which AI has the opportunity to disrupt architectural design is in its capacity 

to open up computer programming for non-programmers. The field of architecture during the last 

decade has witnessed an increasing number of architects learning how to code, using this skill to extend 

commercial CAD software or develop their own, and growing into a strong community of computational 

designers benefiting from their reciprocal contributions (Davis and Peters 2013). However, the paradigm 

that sets AI apart from traditional computer programming is the possibility of creating algorithms whose 

functionality has not been defined by encoding a set of rules, but rather extracted from a dataset of 

examples. As technology evolves and democratizes, working with neural networks is becoming largely 

accessible to more general audiences and, currently, many frameworks compete to provide means to 

train ML models without the need to write a single line of code (Lengyel 2021). If no programming is 

required but, instead, it is enough to simply gather samples, this opens the door to curation as a form of 

programming by example (Lieberman 2000) and, ultimately, a form of design (Martínez Alonso 2017). 

Such an idea also highlights the relevance of datasets as a modern form of information contribution. ML 
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is largely possible nowadays thanks to the abundance of data available in the information era. Still, the 

effort of collecting, structuring, and annotating a dataset is quite remarkable, and should be considered 

akin to other forms of traditional knowledge. Governments are already highlighting the strategic 

importance of making public data further accessible for AI research (White House 2016) and, within 

design, an increasing number of open dataset contributions are accelerating research and innovation in 

the field (Kalervo et al. 2019; Koch et al. 2019; Lu et al. 2021; Willis et al. 2021b). 

 

Outlook 

AI has experienced a tremendous development in the last decade, thanks to groundbreaking advances 

in ML algorithms, drastic hardware improvements in computation power, and global access to data, 

resulting in a mass democratization of the techniques necessary to develop novel AI frameworks, and 

boosting a global explosion of research contributions in the field. And just like personal computers took 

computation from large corporations and research labs into the hands of the general public, we might 

be at the dawn of a similar shift in AI accessibility: from specialized, technical audiences to universal 

users. Such transition is already evident in many tech-heavy, consumer-oriented applications, such as 

home automation, online retail, or autonomous vehicles. Yet, as with many other technological 

innovations, the architecture industry has been slow in harnessing the power of AI tools in the design 

and production of the built environment. Undoubtedly, architecture is a much more niche area that 

consumer goods. But the open-ended, multi-constrained nature of the problems that are typically 

involved in design processes is also a much worse fit for the current affordances of ML workflows, 

adding structural friction to the adoption of AI tools in the field. Nevertheless, current progress in AI 

development shows evidence that, very soon, we will see gradual changes in the way architecture is 

created. 

It seems unlikely that complete, detailed generation of architectural designs by fully 

autonomous AI agents will be a reality any time soon. As previously discussed, the complex project that 

is an architectural design—with the need to satisfy its comprehensive set of functional and regulatory 

requirements—still poses a big challenge to the narrow problems that modern ML algorithms are able 

to solve. However, this multifaceted nature of the architectural production process allows for its 

conceptualization as a collection of more discrete tasks, each with the potential of being assisted by ML 

tools. We have seen how the partial generation of building floorplans has been the first entry point to 

undertake the AI-powered architectural design agenda. Similarly, many other predictive applications will 

be developed to assist decision-making in the early stages of the design process, such as estimations of 
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construction time, costs, energy consumption or building usage. Additionally, AI will soon play a 

fundamental role in the automation of the costly and time-consuming tasks typically involved in the 

later stages of architectural production: creation of building drawings, automated design of electrical 

and mechanical diagrams, generation of project documentation, etc. Human supervision through all 

these steps will still be required for the foreseeable future, but we will gradually shift from active 

designers to the role of coordinators and orchestrators of the increasing number of AI agents that will 

become part of this process. Interestingly, such activities are fundamentally not that different from the 

central role that architects typically play as mediators between the different professionals that are 

involved in large construction projects. 

As a consequence, the production of architecture will become faster and cheaper. The speed 

introduced by AI agents that can aid creative thinking and automate technical production will result in 

faster iteration cycles and shorter delivery times, with reduced final costs likely reflecting this 

acceleration. This may not have a drastic impact in the production of singular architecture—office, civic 

or government buildings—but AI agents could become more significant in the housing market, as the 

ubiquitous demand for residential construction may make speed and cost particularly attractive for the 

competitive advantage they may provide. Moreover, housing may soon prove to be the best candidate 

for the earliest forms of complete and fully autonomous AI-generated architecture. The relative 

simplicity of the program for typical residential units or, in other words, their reduced design space, may 

help conform the necessary constraints to make the problem narrow enough to be fully accessible for 

the first successful forms of comprehensive architectural AIs.   

The preponderance of commercial CAD software packages as the core means for modern 

architectural production suggests that AI-powered tools will predominantly be integrated as part of their 

platforms. Initial implementations will likely seek to employ neural networks to automate common 

repetitive functions from the standard set of commands available in the software, in the form of soft 

background assistants providing highlights or autocomplete-like suggestions. Progressively, as 

technologies develop and users habituate to AI partners, companies will compete to provide new, 

extended functionality based on data gathered from their own customer base and made possible by ML. 

Distribution of these tools might initially be embedded with the core software itself. However, as we 

have seen in other similar scenarios, companies will likely provide APIs and frameworks for growing 

communities of superusers to distribute—and monetize—their own contributions, similar to app stores 

or marketplaces, thus furthering the widespread availability of these tools. 
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With AI tools becoming pervasively ingrained in CAD software, a deep reevaluation will be 

required of the standard paradigms used for digital drawing and modeling. Traditional, deterministic 

inputs such as keyboard and mouse, or interaction patterns such as point, click or drag, will need to be 

complemented with more nuanced forms of human-computer interaction that harness the novel 

affordances in neural networks. Working with interpretations of voice and text inputs, hand-drawn 

sketches, facial expressions or hand gesturing will become standard, as literal or implicit descriptions of 

desired outcomes will increasingly develop into the new means to their graphical generation. Just as 

new modes of interaction will be developed, user interfaces and data structures will need to adapt to 

the management of forms of communication that represent design intent, rather than sequences of 

geometrical operations that lead to a formal outcome. Design will supersede the conversational model 

of iterative evaluation of drawings by their author, and evolve instead into a dialog between the AI as 

content generator and the designer as the discriminator of its work: generative adversarial human 

design augmented by AI partners. 

A growing culture of human-AI collaboration in architecture may ignite a renewed interest in 

computational methods for design. The last decade has witnessed a burgeoning community of architects 

and designers becoming superusers by learning computer programming and developing software tools, 

resulting in newly created computational design departments in large firms, new dedicated programs in 

academia and newly dedicated conferences to share their contributions. However, the AI revolution 

may have an even deeper impact in unraveling the untapped creative potential of an even larger 

community of end users by harnessing one of the greatest affordances of neural networks: their 

capacity to be trained without writing a computer code. As ML models are capable of learning from a 

collection of sample data, and as more tools make it easier and accessible to train these models without 

requiring computer science skills, a new form of programming is then possible by simply creating or 

gathering a sufficient number of samples into a personal dataset, a task that is arguably much more 

accessible to the average designer. 

Computer programming may fall out of fashion in favor of data curation as a form of encoding 

higher-level goals such as form, aesthetics, patterns, and style. Data is the new currency. Investing effort 

in creating a bespoke dataset for a neural network to manifest a particular expression will become a 

new form of developing reusable tools. Purposely allowing telemetry in your software to track your 

actions will turn into a standard form of training neural networks to anticipate your next move and 

mimic your own style. Data and trained models will be understood and guarded as a proprietary form of 

intellectual property. 
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Our modern reliance on computers for virtually every aspect of how we live and change our 

world has meant that Artificial Intelligence has and will continue to disrupt every field susceptible to 

being controlled by computation, with architectural design being no exception. Machine Learning bears 

the promise of a wealth of new functionality and automation powered by faster and smarter algorithms. 

Moreover, the predictive and suggestive capacities of AI agents as creative companions may result in a 

global augmentation of our intellectual capacities. In the future, AI agents as synthetic partners in design 

workflows may offer a renewed opportunity to reshape the way we program, understand, and interact 

with computers as design tools, and reflect on the very nature of our own creative thinking. 
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