The Impact of Airbnb on the Housing Market: Estimates from New York City Before COVID-19

Sophie Calder-Wang

November 13, 2020

Motivation

- Rapid growth of the sharing economy facilitated by technology
 - Reduction in transaction costs
 - Under-utilized assets become accessible online
 - Services are produced by individuals rather than firms
- Prominent home-sharing platform Airbnb
 - ▶ YoY growth of over 30% for the last decade
 - Over 7 million listings, larger than any hotels
 - Transform the housing market
- Active political and regulatory debates

Active Political and Regulatory Debates

The New Hork Times

The New Hork Times

New York City Looks to Crack Down on Airbnb Amid Housing Crisis

A crowd protesting Airbnb in front of City Hall last month.
Rick Loomis for The New York Times

By Zoe Greenberg

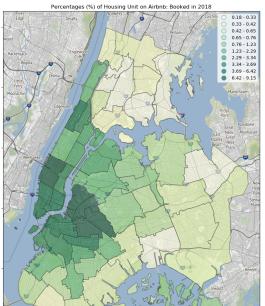
July 18, 2018 f 💌 🖷 🗸

Judge Blocks New York City Law Aimed at Curbing Airbnb Rentals

Protesters rallying against Airbnb in Manhattan in June. City officials say online home-sharing sites have aggravated New York's housing shortage. Rick Leomis for The New York Times

By Benjamin Weiser and J. David Goodman

Jan. 3, 2019


.

Research Question

What is the impact of the sharing economy on participants of the housing market?

- What is the welfare and distributional impact of Airbnb on renters of NYC?
 - Utilization effects
 - Benefit residents who share their homes
 - Reallocation effects
 - Raise rents as landlords reallocate housing units away
 - ▶ How does it vary by income, education, race, and family structure?

Setting: Airbnb in New York City

- Largest Airbnb market in the US
- Substantial variation by geography:
 - ► Chelsea, Williamsburg: > 8%
 - ▶ Dedicated entire homes: 0.7%

Preview

Approach

- ► A structural model of an integrated housing market
- ▶ Housing as a differentiated-product market with many attributes
- Heterogeneity in housing demand and Airbnb supply

Preview

Approach

- ► A structural model of an integrated housing market
- ▶ Housing as a differentiated-product market with many attributes
- Heterogeneity in housing demand and Airbnb supply

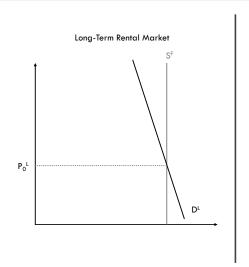
Findings

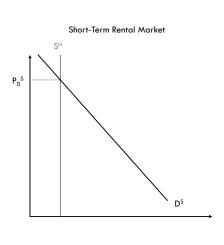
- Reallocation effects dominate the utilization effects for renters
 - Loss from rent increases -\$2.7bn
 - ► Gain from host surpluses +\$300mm
- 2 Increased rent burden falls more on high-income, educated, and white renters
- Utilization gains help only a small fraction of low-cost hosts

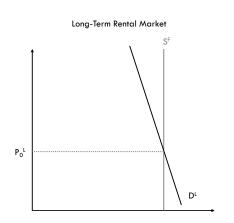
Outline

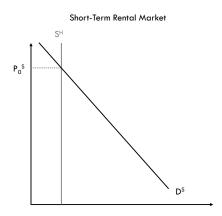
- Introduction
- 2 Literature and Data
- Model
- Counterfactuals

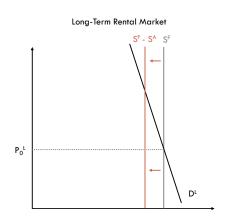
Literature

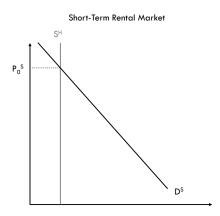

- Residential choices and housing policy:
 - Housing choice: McFadden (1978), Quigley (1985), Bayer, Ferreira, McMillan (2007), Bayer, McMillan, Murphy, Timmins (2016), Epple, Quintero, Sieg (2019)
 - Housing policy: Gyourko (2009), Gyourko and Molloy (2015), Autor, Palmer, Pathak (2014), Diamond, McQuade, and Qian (2017), Ganong and Shoag (2017), Hsieh and Moretti (2019), Favilukis, Mabille, Van Nieuwerburgh (2019), Nathanson (2019)
- Nascent literature on the sharing economy:
 - Car/Ride Sharing: Cramer and Krueger (2016), Cohen, Levitt, Metcalfe (2016), Hall, Horton, and Knoepfle (2017), Fraiberger and Sundararajan (2017), Cook, Diamond, Hall, List, and Oyer (2018), Asadpour, Lobel, and van Ryzin (2020)
 - Home Sharing: Edelman, Luca, and Svirsky (2017), Farronato and Fradkin (2018), Horn and Merante (2017), Barron, Kung, and Proserpio (2017), Garcia-Lopez, Jofre-Monseny, Mazza, and Segu (2019), Valentin (2019), Jaffe, Levitt, and Popov (2019)
- This paper:
 - ▶ The first structural model to estimate the impact of Airbnb on the housing market
 - Distributional implications through heterogeneous preferences
 - A novel way to estimate a heterogeneous supply system

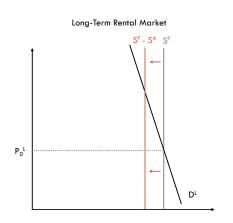

Data

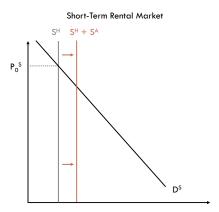

- Airbnb Usage
 - Scraped Airbnb.com data by a third party since 2014
 - Property characteristics:
 - ► Location (latitude and longitude)
 - ► Type of property, number of bedrooms
 - Detailed transaction-level data:
 - Daily performance of each property in New York
 - Price and quantity
- American Community Survey (ACS) Microdata
 - Individual-level housing choices
 - ▶ Demographics: Income, education, race, age, household size etc.
 - Housing: location, rent, physical attributes
 - Approximate neighborhoods: NYC has 55 public-use micro areas (PUMA)

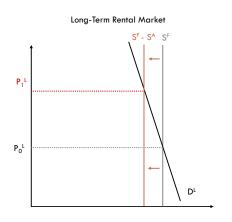

Outline

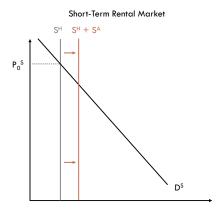

- Introduction
- 2 Literature and Data
- Model
 - A Stylized Model
 - The Main Model
 - Stimation
- Counterfactuals

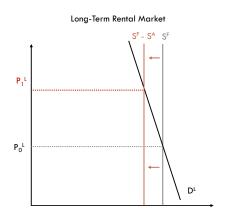


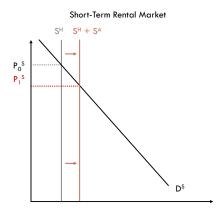


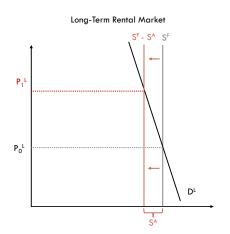


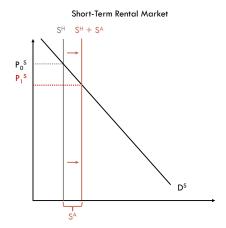


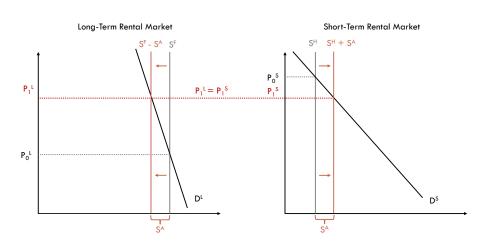


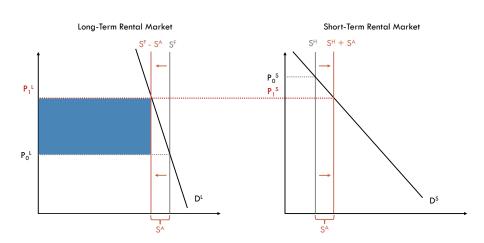


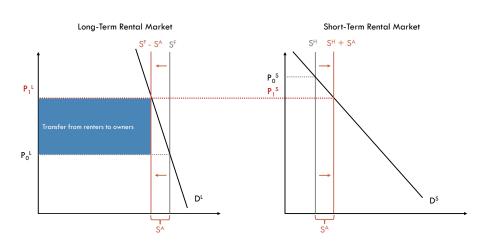


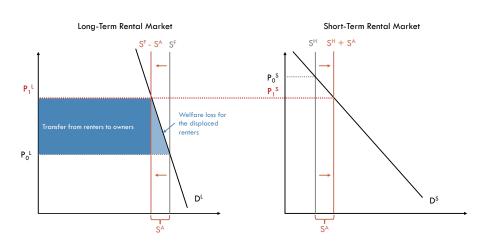


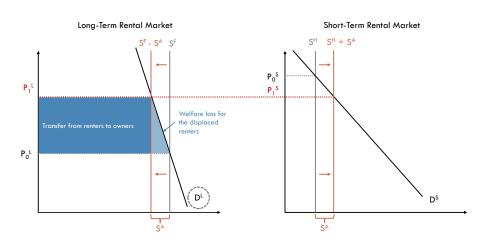


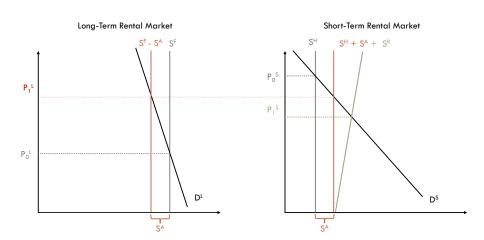


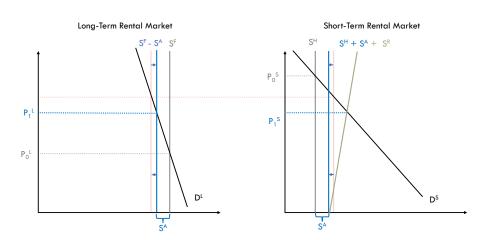


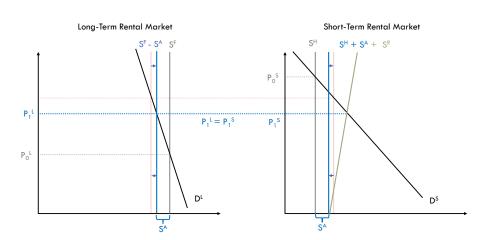


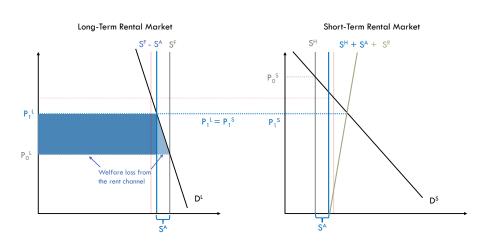


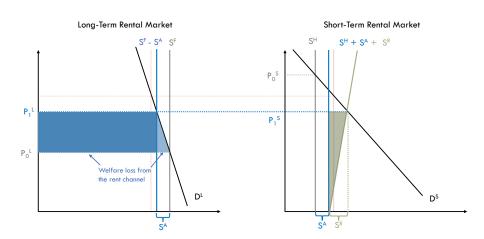


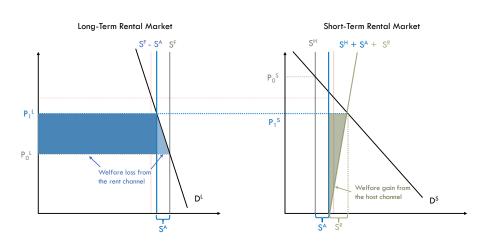


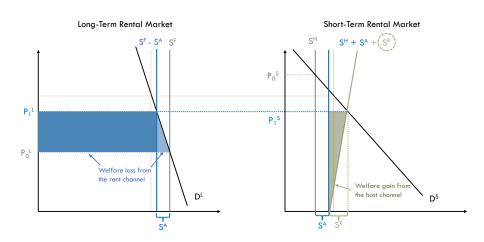


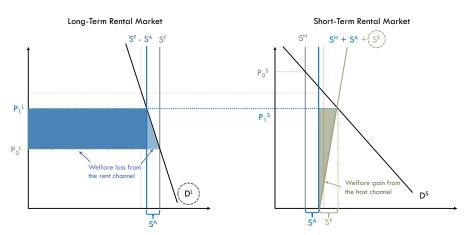


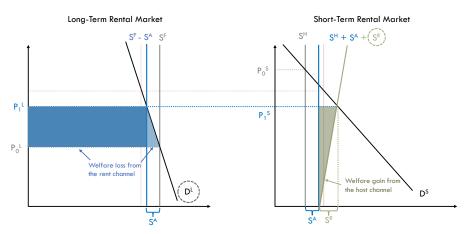












Summary

Estimate the long-term rental demand to capture the loss from housing reallocation

Summary

- Estimate the long-term rental demand to capture the loss from housing reallocation
- 2 Estimate the short-term rental supply to capture the gain from increased utilization

Why A Structural Model?

- Rationale:
 - Equilibrium effects
 - Households allowed to re-optimize
 - Neighborhoods without Airbnbs may also experience rent increases
 - Substitution patterns
 - Substitution towards similar housing types
 - Oistributional implications
 - Random coefficients captures preference heterogeneity
- Assumptions:
 - Supply of physical structures for long-term rental is fixed

- Dynamic considerations are ignored
- Negative externalities are ignored

Outline

- Introduction
- 2 Literature and Data
- Model
 - A Stylized Model
 - 2 The Main Model
 - A **Demand** and supply for long-term rental
 - B Demand and supply for short-term rental
 - C Market equilibrium
 - Stimation
- Counterfactuals

Outline

- Introduction
- 2 Literature and Data
- Model
 - A Stylized Model
 - The Main Model
 - A **Demand** and supply for long-term rental
 - B Demand and supply for short-term rental
 - C Market equilibrium
 - Stimation
- Counterfactuals

Model Part A. Demand for Long-Term Rental

• Utility for household *i* renting housing unit *j* of type *h*:

$$u_{i,j}^L = \alpha_i^L \underbrace{p_h^L}_{ ext{rental price}} + eta_i^L \underbrace{\mathbf{X}_h^L}_{ ext{housing attributes}} + \xi_h^L + \epsilon_{i,j}^L$$

- ► X_h:
 - Including physical attributes, neighborhood attributes, location attributes
 - ▶ Dividing the housing stock in 1050 types

Model Part A. Demand for Long-Term Rental

• Utility for household *i* renting housing unit *j* of type *h*:

$$u_{i,j}^L = \underbrace{\alpha_i^L}_{\text{price coef. rental price}} \underbrace{p_h^L}_{\text{household-specific housing attributes}} \underbrace{\mathbf{X_h^L}}_{\text{h}} + \underbrace{\xi_h^L}_{\text{h}} + \epsilon_{i,j}^L$$

- ► X_h:
 - Including physical attributes, neighborhood attributes, location attributes
 - ▶ Dividing the housing stock in 1050 types
- ▶ Heterogeneous coefficients α_i^L, β_i^L are functions of demographics z_i

Model Part A. Demand for Long-Term Rental

• Utility for household *i* renting housing unit *j* of type *h*:

$$u_{i,j}^L = \underbrace{\alpha_i^L}_{\text{price coef. rental price}} \underbrace{p_h^L}_{\text{household-specific housing attributes}} + \underbrace{\xi_h^L}_{\text{unobserved quality}} + \epsilon_{i,j}^L$$

- ► X_h:
 - ▶ Including physical attributes, neighborhood attributes, location attributes
 - ▶ Dividing the housing stock in 1050 types
- Heterogeneous coefficients α_i^L, β_i^L are functions of demographics z_i
- Unobserved quality ξ_h^L , allowed to be correlated with price

Model Part A. Demand for Long-Term Rental

• Utility for household *i* renting housing unit *j* of type *h*:

$$u_{i,j}^L = \underbrace{\alpha_i^L}_{\text{price coef. rental price}} \underbrace{\rho_h^L}_{\text{household-specific housing attributes}} + \underbrace{\xi_h^L}_{\text{unobserved quality}} + \epsilon_{i,j}^L$$

- ► X_h:
 - Including physical attributes, neighborhood attributes, location attributes
 - ▶ Dividing the housing stock in 1050 types
- ▶ Heterogeneous coefficients α_i^L, β_i^L are functions of demographics z_i
- Unobserved quality ξ_h^L , allowed to be correlated with price
- Individual optimization: $y_i^L = j \iff u_{i,j}^L > u_{i,-j}^L$
- Long-term rental demand for housing type h:
 - ▶ Integral of all those who choose h: $D_h^L(p_h^L, p_{-h}^L) = \int_{A_h^L} dP(\epsilon^L) dP_D^*(z)$
 - z_i is drawn from the distribution of the entire metro market

Model Part A. Supply of Long-Term Rental

- The supply of physical structures available for long-term rental is **fixed** at S_h^F
- Market clearing without Airbnb:

$$\forall h: D_h^L(p_h^L, p_{-h}^L) = S_h^F$$

• Market clearing with Airbnb reallocation:

$$\forall h: D_h^L(p_h^L, p_{-h}^L) = S_h^F - S_h^A(p_h^L, p_{h,\cdot}^A)$$

Outline

- Introduction
- 2 Literature and Data
- Model
 - A Stylized Model
 - 2 The Main Model
 - A Demand and supply for long-term rental
 - B Demand and supply for short-term rental
 - C Market equilibrium
 - Stimation
- Counterfactuals

Model Part B: Supply of Short-Term Rental By Absentee Landlords

- An absentee landlord reallocates from long-term to short-term if more profitable
- Quantity reallocated depends on prices in both markets:

$$S_h^A(p_h^L,p_{h,\cdot}^A)$$

 \triangleright S_h^A obtained from data

$$u_{i,t}^R = \alpha_i^R \qquad \underbrace{p_{n,t}^A}_{\text{Airbnb price for a room in nbhd. } n}^A + \beta_i^R \qquad \underbrace{X_{n,t}^R}_{\text{constant, time FEs}}^R + \xi_{n,t}^R + \epsilon_{i,t}^R$$

Utility of providing an Airbnb room for household i in neighborhood n on day t:

$$u_{i,t}^R = \underbrace{\alpha_i^R}_{\text{price coef. Airbnb price for a room in nbhd. } p_{n,t}^A + \underbrace{\beta_i^R}_{\text{cost of hosting}} \underbrace{X_{n,t}^R}_{\text{n,t}} + \underbrace{\xi_{n,t}^R}_{\text{n,t}} + \epsilon_{i,t}^R$$

 $ightharpoonup \alpha_i^R$ and β_i^R for the constant term is a function of demographics z_i

$$u_{i,t}^R = \underbrace{\alpha_i^R}_{\text{price coef. Airbnb price for a room in nbhd. } p_{n,t}^A + \underbrace{\beta_i^R}_{\text{household-specific cost of hosting}}_{\text{cost of hosting}} \underbrace{X_{n,t}^R}_{\text{constant, time FEs}} + \underbrace{\xi_{n,t}^R}_{\text{unobserved cost}} + \epsilon_{i,t}^R$$

- $ightharpoonup \alpha_i^R$ and β_i^R for the constant term is a function of demographics z_i
- Unobserved cost $\xi_{n,t}^R$ allowed to be correlated with price

$$u_{i,t}^{R} = \underbrace{\alpha_{i}^{R}}_{\text{price coef.}} \underbrace{p_{n,t}^{A}}_{\text{Airbnb price for}} + \underbrace{\beta_{i}^{R}}_{\text{bousehold-specific constant,}} \underbrace{X_{n,t}^{R}}_{\text{constant,}} + \underbrace{\xi_{n,t}^{R}}_{\text{unobserved cost}} + \epsilon_{i,t}^{R}$$

- $ightharpoonup lpha_i^R$ and eta_i^R for the constant term is a function of demographics z_i
- Unobserved cost $\xi_{n,t}^R$ allowed to be correlated with price
- Resident *i* hosts if better than alternative personal use: $y_{i,t}^R = 1 \iff u_{i,t}^R > 0$
- Short-term rental supply in neighborhood n day t:
 - ▶ Integral of all those who host: $S_{n,t}^R(p_{n,t}^A) = \int_{A_{n,t}^R} dP(\epsilon^R) dP_{D_n}^*(z)$
 - z_i drawn from neighborhood n

Model C: Market Equilibrium

• A sorting equilibrium characterized by the price vectors:

$$p_h^L$$
, $p_{h,\cdot}^A$

• Clearing of the long-term rental market of each type:

$$\forall h: \quad D_h^L(p_h^L, p_{-h}^L) = S_h^F - S_h^A(p_h^L, p_{h,\cdot}^A) \tag{1}$$

• Clearing of the short-term rental market of each type each period:

$$\forall h, t: D_{h,t}^{A}(p_{h,t}^{A}, p_{-h,t}^{A}) = S_{h,t}^{A}(p_{h}^{L}, p_{h,\cdot}^{A}) + S_{h,t}^{R}(p_{h,t}^{A})$$
 (2)

Outline

- Introduction
- 2 Literature and Data
- Model
 - A Stylized Model
 - The Main Model
 - A **Demand** and supply for long-term rental
 - B Demand and supply for short-term rental
 - C Market equilibrium
 - Stimation
- Counterfactuals

Outline

- Introduction
- 2 Literature and Data
- Model
 - A Stylized Model
 - 2 The Main Model
 - A **Demand** and supply for long-term rental ←
 - B Demand and supply for short-term rental
 - C Market equilibrium
 - Stimation
- Counterfactuals

Estimation of Long-Term Rental Demand: Overview

• Long-term rental utility for household *i* for housing unit *j* of type *h*:

Estimation of Long-Term Rental Demand: Overview

• Long-term rental utility for household *i* for housing unit *j* of type *h*:

- Moment conditions
 - lacktriangle Cov (housing attributes, household characteristics) to identify $\pi_{b,k}^L$

Estimation of Long-Term Rental Demand: Overview

• Long-term rental utility for household *i* for housing unit *j* of type *h*:

- Moment conditions
 - lacktriangle Cov (housing attributes, household characteristics) to identify $\pi_{b,k}^L$
 - Housing attributes as product characteristics
 - Relative scarcity in housing attributes acts as a supply shifter

Estimation of Long-Term Rental Demand: Results

WTP (\$ mo)	Demographic Characteristics						
Nbhd. Attributes	Ln Income	HH Size	Black	Hispanic	Asian	College	
Pct Black (Std)	56.7	-47.9	774.4	330.6	272.1	67.6	
	(20.3)	(15.9)	(232.6)	(101.2)	(86.6)	(27.9)	
Pct Hispanic (Std)	56.3	-22.8	376.9	469.3	221.5	94.8	
	(19.9)	(9.4)	(115.8)	(141.5)	(71.5)	(33.7)	
Pct Asian (Std)	47.8	-14.3	98.2	138.0	410.0	-37.7	
	(16.9)	(7.1)	(39.0)	(44.9)	(123.9)	(19.2)	
Pct College (Std)	145.9	-54.0	185.9	37.0	93.8	260.2	
	(45.7)	(18.5)	(68.1)	(32.2)	(44.7)	(81.7)	
Inside NYC	-337.8	-421.2	120.0	29.1	299.0	-2.3	
	(106.9)	(128.6)	(97.6)	(83.9)	(129.4)	(68.6)	
Commuting Time (Std)	38.7	-6.3	127.7	50.7	210.4	8.4	
	(19.9)	(11.9)	(56.9)	(43.0)	(76.8)	(33.1)	

Estimation of Long-Term Rental Demand: Results

WTP (\$ mo)	Demographic Characteristics					
Housing Attributes	Ln Income	HH Size	Black	Hispanic	Asian	College
One Bedroom	75.8	255.1	-40.3	-67.0	-177.1	-86.4
	(31.2)	(78.6)	(55.1)	(54.5)	(75.6)	(48.3)
Two Bedroom	59.1	520.5	98.1	-24.2	-273.4	-212.6
	(28.8)	(156.4)	(63.8)	(54.1)	(101.0)	(76.9)
Three Bedroom	32.4	717.6	143.8	-37.2	-329.1	-214.6
	(28.7)	(214.9)	(80.7)	(64.8)	(121.0)	(82.6)
Four Bedroom	85.0	884.9	-206.5	-328.3	-297.9	-244.9
	(66.7)	(266.0)	(172.3)	(171.9)	(170.2)	(134.0)
Built After 1980	22.4	-35.9	157.9	55.1	42.3	-27.8
	(14.7)	(13.7)	(56.4)	(33.3)	(36.7)	(25.0)
Built 1940-1980	-102.6	6.1	137.0	125.4	-84.8	58.6
	(34.3)	(10.1)	(55.6)	(50.6)	(47.5)	(32.6)
5+ Units	9.7	58.6	-3.8	-118.4	-110.6	-6.7
	(9.5)	(18.6)	(25.9)	(41.3)	(40.1)	(17.6)
Monthly Rent	0.33	-0.03	-0.36	-0.23	-0.18	0.21
	(0.10)	(0.02)	(0.13)	(0.10)	(0.10)	(0.08)

Estimation of Long-Term Rental Demand: Results

	(.)	4-3	(-)
	(1)	(2)	(3)
	OLS	Instrumented	(\$) WTP Mo.
Monthly Rent (\$k)	0.0213	-2.044***	
	(0.0341)	(0.609)	
One-Bedroom	0.425***	0.929***	454.5***
	(0.0447)	(0.188)	(78.2)
Two-Bedroom	0.528***	1.325***	648.2***
	(0.0465)	(0.280)	(93.5)
Three-Bedroom	0.271***	1.392***	681.0***
	(0.0555)	(0.393)	(76.7)
Built After 1980	-0.114***	0.139	68.2
	(0.0402)	(0.145)	(60.9)
Built 1940 to 80	-0.00917	-0.242**	-118.4**
	(0.0337)	(0.105)	(43.9)
5+ Units	0.00182	-0.209**	-102.3**
	(0.0282)	(0.0974)	(41.2)
Commuting Time (Std)	0.119***	-0.782***	-382.6***
- ()	(0.0215)	(0.279)	(28.2)
Inside NYC	-1.026***	2.536**	1240.7***
	(0.0683)	(1.036)	(147)
N	1050	1050	1050

- First stage F-statistics is 15.7
- Aggregate price elasticity ϵ : 1.0
 - ▶ 1.0% contraction in supply
 - ▶ 1.0% increase in price

Outline

- Introduction
- 2 Literature and Data
- Model
 - A Stylized Model
 - The Main Model
 - A **Demand** and supply for long-term rental
 - B Demand and supply for short-term rental
 - C Market equilibrium
 - Stimation
- Counterfactuals

Outline

- Introduction
- 2 Literature and Data
- Model
 - A Stylized Model
 - 2 The Main Model
 - A Demand and supply for long-term rental
 - B Demand and supply for short-term rental ←
 - C Market equilibrium
 - Stimation
- Counterfactuals

Estimation of Short-Term Rental Supply: Overview

$$\begin{array}{llll} u_{i,t}^R & = & \alpha_i^R \, \boldsymbol{p}_{n,t}^A & + & \boldsymbol{\beta}_i^R \, \boldsymbol{X}_{n,t}^R & + & \boldsymbol{\xi}_{n,t}^R & + & \boldsymbol{\epsilon}_{i,t}^R \\ \begin{bmatrix} \alpha_i^R \\ \boldsymbol{\beta}_i^R \end{bmatrix} & = & \underbrace{\begin{bmatrix} \alpha_i^R \\ \boldsymbol{\beta}_i^R \end{bmatrix}}_{\text{common to all}} & + & \underbrace{\begin{bmatrix} \pi_{\alpha,1}^R \dots \pi_{\alpha,K}^R \\ \pi_{\beta,1}^R \dots \pi_{\beta,K}^R \end{bmatrix}}_{\text{household-specific}} & \begin{bmatrix} z_{i,1} \\ \vdots \\ z_{i,k} \end{bmatrix} \end{array}$$

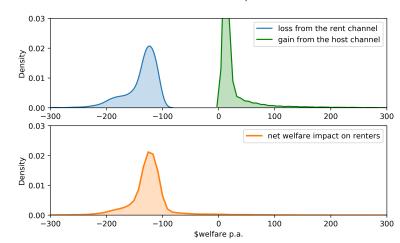
Estimation of Short-Term Rental Supply: Overview

- Novel:
 - Adapt BLP to estimate the peer production function with random coefficients
 - ► Match market shares in each neighborhood and every day
 - Over 70,000 market-share observations: MPEC

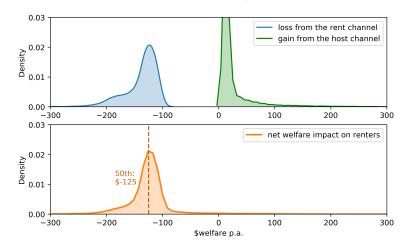
Estimation of Short-Term Rental Supply: Overview

- Novel:
 - Adapt BLP to estimate the peer production function with random coefficients
 - Match market shares in each neighborhood and every day
 - Over 70,000 market-share observations: MPEC
- Price instrument:
 - Seasonality in tourism demand
 - Number of hotel bookings in NYC on the same day seven years ago
 - Month, day of week, and holiday FE

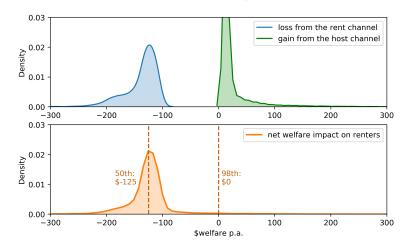
Estimation of Short-Term Rental Supply: Results

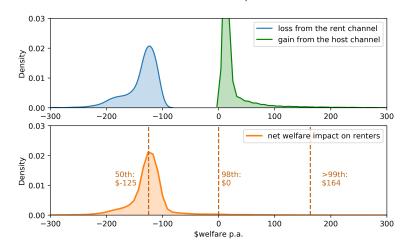

		(1) Naïve	(2) Naïve	(3) IV	(4) IV	(5) (\$) per diem
Linear Coef.	Non-Linear Coef.					
Price		0.006 (0.002)	0.007 (0.001)	0.052 (0.002)	0.056 (0.002)	
	× In(income)	-0.018 (0.001)	-0.018 (0.002)	-0.018 (0.003)	-0.011 (0.006)	
Cost		15.44 (0.10)	15.51 (0.09)	22.07 (0.12)	21.36 (0.11)	224.3 (12.7)
	x Has College	-1.17 (0.68)	-2.55 (0.24)	-3.47 (0.27)	-3.27 (0.25)	-58.9 (4.8)
	x Has Children	2.40 (0.42)	2.58 (0.36)	1.95 (0.53)	2.60 (0.44)	46.7 (8.1)
	× Age (yr)	0.094 (0.005)	0.093 (0.005)	0.091 (0.006)	0.097 (0.006)	1.8 (0.1)
	x In(income)	0.24 (0.09)	-0.14 (0.13)	-0.39 (0.26)	-0.29 (0.48)	-5.1 (8.7)
Quad. Time		Yes	Yes	Yes	Yes	
Month FE		No No	Yes Yes	No No	Yes Yes	
Day of Week FE Holiday FE		No No	Yes	No	Yes	
N		75,895	75,895	75,895	75,895	

- First-stage F: 25.4
- Supply elasticity ϵ : 5.96
 - ► Income −1std : 6.70
- Low-cost suppliers:
 - Have college degrees
 - Have no children
 - Young

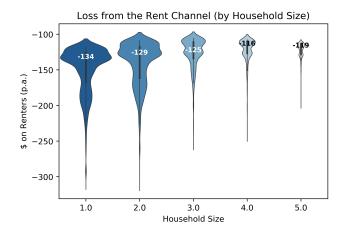

Outline

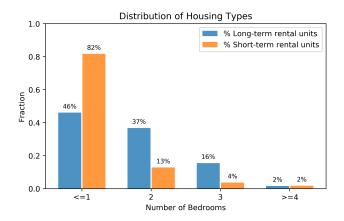
- Introduction
- 2 Literature and Data
- Model
- Counterfactuals
 - 1 Loss from the Rent Channel (Reallocation Effects)
 - @ Gain from the Host Channel (Utilization Effects)
 - Net Welfare Impact

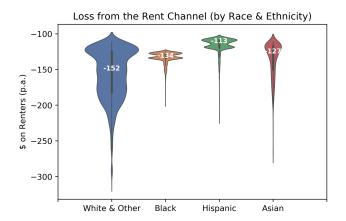


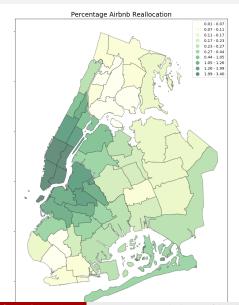


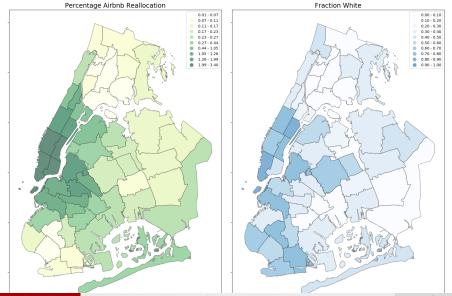
Loss from the Rent Channel (Reallocation Effects)

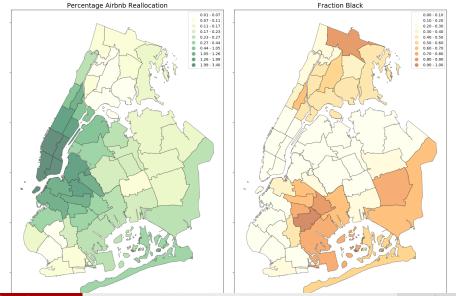

- Counterfactual specification:
 - "Return" reallocated housing units to the long-term rental market
- Recompute the new market-clearing equilibrium prices:

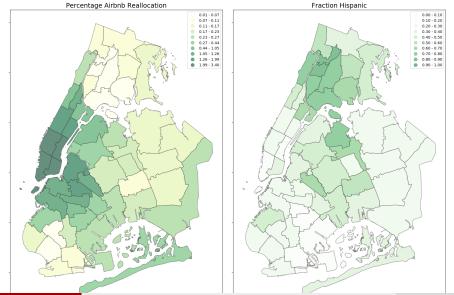

$$\forall h: D_h^L(p_h^{L, \text{ No Airbnb}}, p_{-h}^{L, \text{ No Airbnb}}) = S_h^F$$
(3)

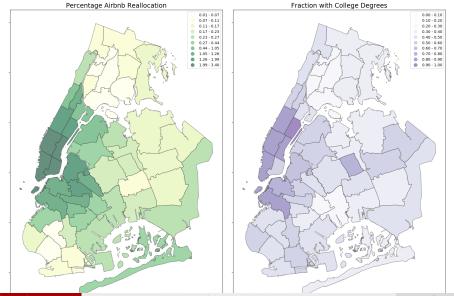

- ► Fraction of the total housing market reallocated to Airbnb: 0.68%
- ▶ Average rent change due to the reallocation: 0.71%
- Ompensating variation for logit errors:

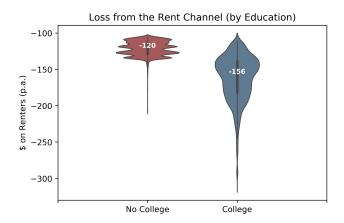

$$CV_{i}^{L} = \frac{1}{\alpha_{i}^{L}} \left(\ln \sum_{j \in \mathcal{S}^{F} \setminus \mathcal{S}^{A}} \exp\left(V_{i,j}^{L}\right) - \ln \sum_{j \in \mathcal{S}^{F}} \exp\left(V_{i,j}^{L, \text{No Airbnb}}\right) \right) \tag{4}$$

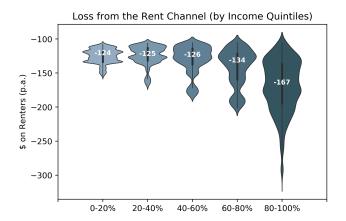

CV computed for all renters in the city







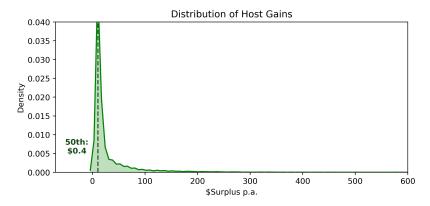




Drivers of Distributional Differences:

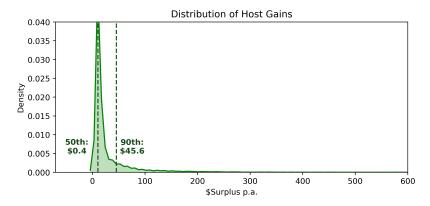
- Geography
 - More Airbnb reallocation in high-income, educated, and white neighborhoods
- Willingness-to-Pay
 - Higher-income households have higher WTP for all housing attributes
 - Geography remains dominant
 - Comparison to a hypothetical uniform Airbnb entry
- Open Demographic Clustering
 - Housing preferences are clustered along demographic lines
 - "Spreading" to neighborhoods with similar demographics
 - White, educated neighborhoods further away from city centers

Outline

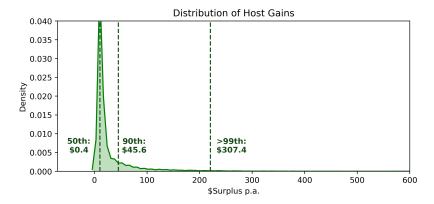

- Introduction
- 2 Literature and Data
- Model
- Counterfactuals
 - 1 Loss from the Rent Channel (Reallocation Effects)
 - @ Gain from the Host Channel (Utilization Effects)
 - Net Welfare Impact

- Counterfactual specification:
 - ► Take away residents ability to host on Airbnb
- 2 Compensating variation for logit errors:

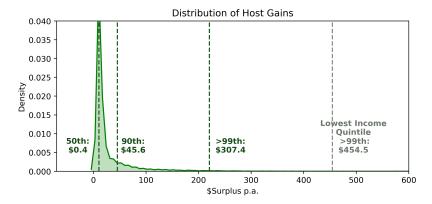
$$CV_i^R = \frac{1}{\alpha_i^R} \sum_t \ln \left(1 + \exp(V_{i,t}^R)\right) \qquad V_{i,t}^R = \alpha_i^R p_{n,t}^A + \beta_i^R X_{n,t}^R + \xi_{n,t}^R$$


- Counterfactual specification:
 - ► Take away residents ability to host on Airbnb
- 2 Compensating variation for logit errors:

$$CV_i^R = rac{1}{lpha_i^R} \sum_t \ln\left(1 + \exp(V_{i,t}^R)
ight) \qquad V_{i,t}^R = lpha_i^R oldsymbol{p}_{n,t}^A + eta_i^R oldsymbol{X}_{n,t}^R + \xi_{n,t}^R$$


- Counterfactual specification:
 - ► Take away residents ability to host on Airbnb
- 2 Compensating variation for logit errors:

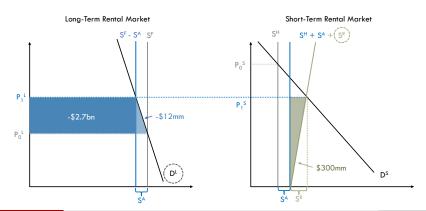
$$CV_i^R = rac{1}{lpha_i^R} \sum_t \ln \left(1 + \exp(V_{i,t}^R)
ight) \qquad V_{i,t}^R = lpha_i^R p_{n,t}^A + eta_i^R X_{n,t}^R + \xi_{n,t}^R$$


- Counterfactual specification:
 - ► Take away residents ability to host on Airbnb
- 2 Compensating variation for logit errors:

$$CV_i^R = rac{1}{lpha_i^R} \sum_t \ln \left(1 + \exp(V_{i,t}^R)
ight) \qquad V_{i,t}^R = lpha_i^R p_{n,t}^A + eta_i^R X_{n,t}^R + \xi_{n,t}^R$$

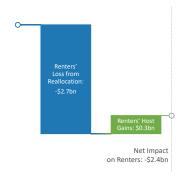
- Counterfactual specification:
 - ► Take away residents ability to host on Airbnb
- 2 Compensating variation for logit errors:

$$CV_i^R = rac{1}{lpha_i^R} \sum_t \ln\left(1 + \exp(V_{i,t}^R)
ight) \qquad V_{i,t}^R = lpha_i^R oldsymbol{p}_{n,t}^A + eta_i^R oldsymbol{X}_{n,t}^R + \xi_{n,t}^R$$



Outline

- Introduction
- 2 Literature and Data
- Model
- Counterfactuals
 - 1 Loss from the Rent Channel (Reallocation Effects)
 - @ Gain from the Host Channel (Utilization Effects)
 - Net Welfare Impact

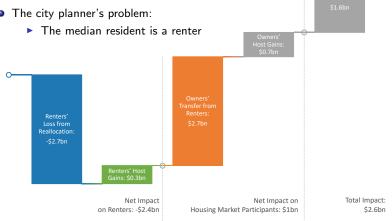

Net Welfare Impact on Renters

- The reallocation channel dominates the utilization channel
 - ► The median renter making \$47k loses \$125 p.a.
 - Larger welfare losses suffered by educated and high-income renters
 - Losses widespread, gains concentrated
- Aggregate and capitalize the impact:

- The social planner's problem:
 - Renters
 - Owners
 - ► Tourists and hotels

- The social planner's problem:
 - Renters
 - Owners
 - Tourists and hotels

- The social planner's problem:
 - Renters
 - Owners
 - Tourists and hotels


• The social planner's problem:

• The social planner's problem:

- Owners
- Tourists and hotels
- The city planner's problem:

Limitations / Extensions

- Long-term rental demand unchanged
 - No income effects
 - No re-optimization based on expected host gains
- A frictionless, static approximation
 - No switching costs
 - No explicit rent stabilization

Concluding Thoughts

- The impact of Airbnb on NYC residents:
 - Built a structural model of an integrated housing market:
 - ▶ Material welfare losses suffered by most renters (-\$2.4bn NPV)
 - ▶ Rich preference heterogeneity for the distributional impact:
 - Larger losses for high income, educated, and white renters
 - Host gains accrue to a concentrated few
- What are the policy implications?
 - ► The popular solution is to restrict Airbnb reallocation
 - ▶ A reverse transfer from property owners back to renters
 - Reduce aggregate welfare
- The importance of existing market structures for policy
 - ► An inelastic housing supply remains the underlying challenge
 - ▶ How the pie is cut will affect the size of the pie

Thank you!

Thank you!